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Abstract
We consider a charged particle driven by a time-dependent flux threading a
quantum ring. The dynamics of the charged particle is investigated using a
classical treatment, a Fourier expansion technique, a time-evolution method,
and the Lewis–Riesenfeld approach. We have shown that, by properly managing
the boundary conditions, a time-dependent wavefunction can be obtained using
a general non-Hermitian time-dependent invariant, which is a specific linear
combination of initial angular-momentum and azimuthal-angle operators. It is
shown that the linear invariant eigenfunction can be realized as a Gaussian-type
wavepacket with a peak moving along the classical angular trajectory, while the
distribution of the wavepacket is determined by the ratio of the coefficient of
the initial angle to that of the initial canonical angular momentum. From the
topologically nontrivial nature as well as the classical trajectory and angular
momentum, one can determine the dynamical motion of the wavepacket. It
should be noted that the peak position is no longer an expectation value of the
angle operator, and hence the Ehrenfest theorem is not directly applicable in
such a topologically nontrivial system.

1. Introduction

A charged particle driven by a time-dependent perturbation in a quantum system is a nontrivial
fundamental issue [1–8]. One can access the charged particle wavefunction by placing it in a
quantum ring threaded by a time-dependent magnetic flux. The vector potential A(t) associated
with the time-dependent flux �(t) times the charge q leads to a phase shift proportional
to the number of flux quanta penetrating the ring; this is known as Aharonov–Bohm (AB)
effect [9–11]. In adiabatic cyclic evolution, Berry [12] was the first to discover that there exists
a geometric phase. Later on, Aharonov and Anandan (AA) removed the adiabatic restriction to
explore the geometric phase for any cyclic evolution [13]. Time-dependent fields are also used
to deal with field-driven Zener tunnelling, in which nonadiabaticity plays a crucial role [14–16].

In mesoscopic systems, a number of manifestations of the AB effect have been predicted
and verified [17–22]. On the other hand, Stern demonstrated that the Berry phase affects the
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particle motion in the ring similarly to the AB effect, and a time-dependent Berry phase induces
a motive force [24]. It was found experimentally [23] that a quantum ring threaded by a static
magnetic field displays persistent currents oscillating in period of�0 = h/q , the ratio of Planck
constant and charge of a particle.

In the present work, we consider a noninteracting spinless charged particle moving
cyclically in a quantum ring in the presence of a time-dependent vector potential. Such a
particle motion can be described by the time-dependent Schrödinger equation

ih̄
∂ψ

∂ t
= Ĥ(t)ψ, (1)

where the Hamiltonian Ĥ(t) is induced by an external time-dependent vector potential A(t),
given by

Ĥ (t) = 1

2m

[
P̂ − qA(t)

]2

= 1

2I

[
L̂ − q R A(t)

]2
. (2)

Here P̂ = eθ P̂θ is the canonical momentum operator with eθ being the unit vector along the
azimuthal angle θ ; L̂ = L̂z = (r̂ × P̂)z is the canonical angular momentum operator in the
z direction; I = m R2 is the moment of inertia of the particle; A(t) = A(t)eθ is the vector
potential; and R is the radius of the circular ring. This time-dependent dynamical problem can
be solved by taking into account the Fourier expansion, time evolution operator, and Lewis–
Riesenfeld (LR) method [25, 26].

2. A classical treatment

We first analyse the time-dependent problem in a classical manner. The time-varying magnetic
flux induces an electric field E = Eeθ such that E = −∂A/∂ t . The charged particle thus
obtain a kinematic momentum increment during the time interval from 0 to t , namely

�pc = �(mv) = m[v(t) − v(0)] = −q [A(t)− A(0)] , (3)

where pc = mv is the kinematic momentum. It should be noted that both pc and q A are not
conservative quantities, while from equation (3) we see that the canonical momentum Pc is a
constant of motion:

Pc(t) = mv(t)+ q A(t) = mv(0)+ q A(0) = Pc(0). (4)

Comparing the two identities in equation (2), we see that the result of equation (3) is
equivalent to

�lc = I [ω(t) − ω(0)] = − q

2π
[�(t) −�(0)] , (5)

where lc = (r × pc)z = Iω indicates the kinematic angular momentum, ω is the angular
velocity,� is the magnetic flux threading the ring, and the fact that

�(t) = 2π R A(t) (6)

has been used. Also, equation (4) leads us to obtain the following relations:

Lc(t) = lc(t)+ q

2π
�(t) = lc(0)+ q

2π
�(0) = Lc(0). (7)

These identities imply that the canonical angular momentum Lc, defined by (r × Pc)z , is also
a constant of motion.
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Now we define the writhing number as

n�(t) ≡ �(t)

�0
, (8)

where �0 = h/q is a flux quantum. We also define

Lc ≡ n0h̄, lc(t) ≡ nc(t)h̄, (9)

then we have

nc(t) = n0 − n�(t). (10)

All of these ns are real numbers.
Now the angular position of the driven particle is given by

θc(t) = θ0 +
∫ t

0

nc(τ )h̄

I
dτ

= θ0 + ω0t −
∫ t

0

n�(τ)h̄

I
dτ. (11)

Here θ0 indicates the initial azimuthal angle; and ω0 = ω(0) = n0h̄/I stands for the initial
angular velocity. Below we denote the initial kinematic angular momentum l0 ≡ lc(0) for
simplicity.

Hereafter we solve the quantum version of the problem, i.e., equation (1), using three
different methods. The classical quantities lc(t) and θc(t) will also appear in the expressions of
the wavefunction. Their roles in the quantum problem will be further explored.

3. A Fourier expansion method

The simplest method for solving the time-dependent flux-driven problem is the Fourier
expansion method. The first thing about the system we discuss is that the wavefunction satisfies
the periodic boundary condition:

ψ(θ, t) = ψ(θ + 2π, t). (12)

The most general form of ψ for the present problem is thus written as

ψ(θ, t) =
∞∑

n=−∞
cn fn(t)e

inθ , (13)

where the cns are appropriate coefficients to be determined by the initial and the boundary
conditions.

Substituting equation (13) into (1), we can find the identity
∞∑

n=−∞
ih̄ cn ḟn(t)e

inθ =
∞∑

n=−∞
cn fn(t)

(nh̄ − q R A(t))2

2I
einθ . (14)

Solving equation (14), after some procedures we obtain

fn(t) = exp

{
− i

2I h̄

∫ t

0

[
nh̄ − q R A(t)

]2
dt

}
, (15)

and thus

ψ(θ, t) =
∞∑

n=−∞
cn exp

{
− ih̄

2I

∫ t

0
[n − n�(τ)]

2 dτ + inθ

}
. (16)

As a simple example, let us choose

cn = N exp
[−σ 2(n − n0)

2 − iθ0(n − n0)
]
, (17)
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where N indicates an appropriate normalization constant; σ , θ0 and n0 are real numbers, and n
is an integer.

Substituting equation (17) into (16), we get

ψ(θ, t) = N exp

[
− i

h̄

∫ t

0

l2
c (τ )

2I
dτ + in0θc(t)

]

×
∞∑

n=−∞
exp

{
−σ 2

(
1 + it

T

)
(n − n0)

2 + in [θ − θc(t)]

}
, (18)

where T = 2Iσ 2/h̄. Applying the Poisson summation formula
∞∑

n=−∞
f (n) =

∞∑
n=−∞

(∫ ∞

−∞
f (x)ei2πnx dx

)
(19)

on the function

f (x) = exp

[
−σ 2

(
1 + it

T

)
(x − n0)

2 + i (θ − θc(t)) x

]
, (20)

we can obtain an alternative expression

ψ(θ, t) = N

√
π

σ 2(1 + it
T )

exp

[
− i

h̄

∫ t

0

l2
c (τ )

2I
dτ

]

×
∞∑

n=−∞
exp

[
− (θ − θc(t)+ 2nπ)2

4σ 2
(
1 + it

T

) + in0(θ + 2nπ)

]
. (21)

We note that equation (16) is the general solution of the problem, whereas equations (18)
and (21) are two different expressions for a special solution defined by the cn coefficients of
equation (17). When σ 2t/T < 1, it should be noted that equation (18) converges slowly,
while equation (21) converges quickly. This means that in the short-time limit, t < T/σ 2, the
wavefunction is better described by a circulating wavepacket. However, for the case of a long-
time limit, t � T/σ 2, equation (18) has fast convergency; this is because, in this expression,
only the n ≈ n0 terms are important. If we further assume n0 to be an integer, then at large t
the wavefunction approaches a circulating plane wave that is characterized by n0, namely

ψ(θ, t) ≈ N exp

[
− i

h̄

∫ t

0

l2
c (τ )

2I
dτ + in0θ

]
.

From these findings we conclude that equation (21) describes the short-time behaviour and
equation (18) describes the long-time behaviour of the ring system when the wavefunction is
defined by equation (17).

4. A time evolution method

In this section, we shall present how to get the general solution shown in the previous section
in terms of the time evolution operator Û(t). The state |ψ(t)〉 is connected with the initial state
|ψ(0)〉 through

|ψ(t)〉 = Û(t)|ψ(0)〉 (22)

and the wavefunction ψ(θ, t) is given by

ψ(θ, t) = 〈θ |Û(t)|ψ(0)〉, (23)

where |θ〉 is the θ -eigenket in the Schrödinger picture that will be explained later.
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To begin with, we introduce the canonical commutator

[θ̂ (0), L̂(0)] = ih̄. (24)

From this identity, we have

[θ̂ (t), L̂(t)] = Û †(t)[θ̂ (0), L̂(0)]Û(t) = ih̄. (25)

Utilizing equation (25) we can derive

dL̂(t)

dt
= [L̂(t), Ĥ (t)]

ih̄
= 0, (26)

and we thus obtain the identity L̂(t) = L̂(0). Following a similar procedure it is easy to obtain

dθ̂ (t)

dt
= [θ̂ (t), Ĥ (t)]

ih̄
= L̂(0)− n�(t)h̄

I
, (27)

which gives us

θ̂ (t) = θ̂ (0)+ L̂(0)t

I
−
∫ t

0

n�(τ)h̄

I
dτ. (28)

Here we see that the canonical angular momentum is a constant of motion. This is consistent
with the classical results discussed in section 2.

From the above results we have

[Ĥ(t), Ĥ (t ′)] = 0 (29)

for any two times t and t ′. Hence the time evolution operator is simply given by

Û(t) = exp

[
− i

h̄

∫ t

0
Ĥ(τ ) dτ

]

= exp

⎡
⎣− ih̄

2I

∫ t

0

(
L̂(0)

h̄
− n�(τ)

)2

dτ

⎤
⎦ . (30)

To proceed further, we define |n〉 as the eigenket of L̂(0) obeying

L̂(0)|n〉 = nh̄|n〉. (31)

Then we assume that |θ〉 is an eigenket of eiθ̂ (0) obeying

eiθ̂ (0)|θ〉 = eiθ |θ〉. (32)

The orthogonal conditions of the two eigenkets can thus be expressed by

〈m|n〉 = 1

2π

∫ 2π

0
ei(m−n)θ dθ = δmn (33)

and

〈θ |θ ′〉 = 1

2π

∞∑
n=−∞

ein(θ−θ ′) = δ(θ − θ ′). (34)

These two orthogonal conditions can be derived from the closure relations
∞∑

n=−∞
|n〉〈n| = 1,

∫ 2π

0
dθ |θ〉〈θ | = 1 (35)

and taking into account the definition

〈θ |n〉 = 1√
2π

einθ = 〈n|θ〉∗. (36)
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It should be noted that both θ and θ ′ are defined in the interval [0, 2π). In the coordinate
representation, einθ is an eigenfunction of L̂ rep = −ih̄∂/∂θ with corresponding eigenvalue nh̄.
This result can be expressed as

〈θ |L̂(0)|n〉 = L̂ rep〈θ |n〉 = nh̄〈θ |n〉. (37)

The wavefunction ψ now can be calculated:

ψ(θ, t) =
∞∑

n=−∞
〈θ |Û(t)|n〉〈n|ψ(0)〉

=
∞∑

n=−∞

〈n|ψ(0)〉√
2π

e− ih̄
2I

∫ t
0 [n−n�(τ)]

2 dτ+inθ . (38)

If we define

cn = 〈n|ψ(0)〉√
2π

, (39)

then the result of equation (38) becomes that of equation (16).
Using the time evolution operator Û(t), we have indeed found the general solution of

equation (16). Based on the commutativity of the Hamiltonian operator at different times
(equation (29)), the Û(t) operator can be constructed straightforwardly by simple integration.

5. The Lewis–Riesenfeld method

In this section, we briefly review the LR method and then apply it to solve the present problem.
We shall show that the LR method is not directly applicable; however, a simple modification
concerning the boundary condition makes it applicable to solving problems with periodic
boundary conditions.

Traditionally, to utilize the LR method [26] of solving a time-dependent system, we have
to find an operator Q̂(t) such that

ih̄
dQ̂

dt
= ih̄

∂ Q̂

∂ t
+ [Q̂, Ĥ ] = 0, (40)

and then find its eigenfunction ϕλ(θ, t) satisfying

Q̂(t) ϕλ(θ, t) = λϕλ(θ, t), (41)

with λ being the corresponding eigenvalue. A wavefunction ψλ(θ, t) satisfying equation (1) is
then obtained via the relation

ψλ(θ, t) = eiαλ(t) ϕλ(θ, t), (42)

where α(t) is a function of time only, satisfying

α̇λ = ϕ−1
λ (i∂/∂ t − Ĥ/h̄)ϕλ. (43)

A general solution ψ of equation (1) is then given by

ψ(θ, t) =
∑
λ

g(λ)ψλ(θ, t), (44)

where g(λ) is a weight function for λ.
To proceed, let us assume that the time-dependent invariant operator Q̂(t) takes the linear

form [5, 6]

Q̂(t) = a(t)L̂ + b(t)θ̂ + c(t), (45)

in which a(t), b(t), and c(t) are time-dependent c-number functions to be determined.

6
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Substituting equation (45) into equation (40) and solving these operator equations, we get

a(t) = a0 − b0t

I
, b(t) = b0, (46)

c(t) = c0 + b0

∫ t

0

n�(τ)h̄

I
dτ, (47)

where a0, b0, and c0 are arbitrary complex constants. Furthermore, substituting equations (46)
and (47) into (45), we find

Q̂(t) = a0 L̂(0)+ b0 θ̂ (0)+ c0 = Q̂(0). (48)

In other words, the invariant Q̂ in the Heisenberg picture is precisely the linear combination
of the initial canonical angular momentum L̂(0) and the initial azimuthal angle θ̂ (0) with an
arbitrary constant c0. Note that in our system the L̂ operator is also an invariant.

It is interesting to ask how the eigenvalue λ evolves in time. Multiplying the factor eiα(t)

on both sides of equation (41), we get

Q̂(t) ψλ(θ, t) = λψλ(θ, t). (49)

Partially differentiating both sides of equation (49) with respect to time and using equation (40),
we find

λ(t) = λ(0); (50)

thus λ is a constant.
To find a solution of equation (1), we have to solve equation (41) first. By solving

equation (41), we get

ϕλ(θ, t) = exp

[
i

h̄

(
μ(t)θ − 1

2
ν(t)θ2

)]
, (51)

where

μ(t) = λ− c(t)

a(t)
, ν(t) = b0

a(t)
. (52)

Substituting equation (51) into (43), we obtain

αλ(t) = αλ(0)−
∫ t

0

[
η2(τ )+ ih̄ν(τ )

]

2I h̄
dτ, (53)

where

η(τ) ≡ μ(τ)− n�(τ)h̄. (54)

In the derivation of equation (53), we have used the following two identities:

μ̇ = ν (μ− n�h̄)

I
, ν̇ = ν2

I
. (55)

Here we see that in general αλ(t) is a complex function.
Although the form of ψλ(θ, t) = eiαλ(t)φλ(θ, t) is indeed a solution of equation (1), it does

not satisfy the periodic boundary condition (see equation (12)). This problem can be resolved
by defining the total wavefunction ψ(θ, t) as the summation of all ψλ(θ + 2nπ, t) terms:

ψ(θ, t) =
∞∑

n=−∞
ψλ(θ + 2nπ, t)

=
∞∑

n=−∞
exp

[
iαλ(t)+ i

h̄
μ(t)(θ + 2nπ)− i

2h̄
ν(t)(θ + 2nπ)2

]
. (56)
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It can also be transformed to the equivalent form below using the Poisson summation
formula:

ψ(θ, t) =
√

h̄

2π iν(t)
exp

[
iαλ(t)+ i

ν(t)

2h̄
θ2

c (t)+ in0θc(t)

]

×
∞∑

n=−∞
exp

[
ih̄(n − n0)

2

2ν(t)
+ in (θ − θc(t))

]
. (57)

From these derivations it should be noted that when using the LR method, the boundary
conditions have to be carefully managed, otherwise one may get an incorrect result.

6. A comparison of various approaches

In this section we shall show that equations (56) and (57) can be cast into the forms of
equations (21) and (18), respectively. To proceed further, let us first borrow the parameters
n0 and θc(t) from section 2; in combination with the results obtained in section 5, we have the
simple identity

a(t)n0h̄ + b(t)θc(t)+ c(t) = a0n0h̄ + b0θ0 + c0. (58)

Comparing this result with equation (50), we find that they are very similar. For simplicity, we
define

λ ≡ a(t)n0h̄ + b(t)θc(t)+ c(t); (59)

in combination with equation (59), it is easy to obtain

μ(t) = n0h̄ + ν(t)θc(t), (60)

η(t) = lc(t)+ ν(t)θc(t). (61)

Further, using the identity

dθ2
c (t)

dt
= 2

I
lc(t)θc(t) (62)

and the identity of ν̇ in equation (55), we have

η2 = l2
c + I

d

dt
(νθ2

c ). (63)

Substituting equation (63) into (53), we get

eiαλ(t) =
eiαλ(0) exp

(
− i

h̄

∫ t
0

l2
c (τ )

2I dτ − iνθ 2
c

2h̄

)
√

1 − ν0t
I

. (64)

In addition, by defining eiαλ(0) and ν0 as

eiαλ(0) ≡ N
√
π

σ
(65)

and

ν0 ≡ − iI

T
= − ih̄

2σ 2
, (66)

we can see clearly that equations (56) and (57) become exactly the same as equations (21)
and (18). Hence, we have verified that the Fourier transform method, the time evolution
method, and the Lewis–Riesenfeld method are equivalent when we choose the coefficients
cn as equation (17). This restriction is not necessary to find the two equivalent general

8
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solutions, equations (16) and (38), obtained by using Fourier expansion and time evolution
methods, respectively. It turns out that the Lewis–Riesenfeld method seems to be more
restrictive.

It is now interesting to discuss the physical meanings of lc(t) and θc(t) we have obtained.
Although they originate from the classical treatment, the sense in which they play the role
of dynamic variables in the corresponding classical system should be further clarified. We
would like to note that in the Schrödinger picture within coordinate representation, lc(t) is the
expectation value of L̂ −q R A(t) = −ih̄∂/∂θ −q R A(t). However, θc(t) is not the expectation
value of θ̂ = θ with respect to the wavefunction obtained in equation (18); instead, it is merely
the peak position of the wavepacket (see equation (21)).

In other words, the conventional Ehrenfest theorem is not directly applicable in this
topologically nontrivial system. This consequence is due to the fact that we are not able to
distinguish the phase between the angle θ and θ + 2nπ . Hence the θ̂ operator is not well
defined; however eiθ̂ is a well-defined operator, as has been demonstrated in section 4. These
facts cause λ to lose its meaning as an expectation value of the Q̂ operator.

We finally point out the relationship between the problem we have considered here and
that we studied in the previous work [8]. In that work we studied the motion of a charged
particle in a one-dimensional space subject to a time-varying linear potential. By doing a
gauge transformation such as that mentioned in [27], the Hamiltonian in [8] can be cast into
the form of equation (1); hence the two problems are equivalent if we ignore the difference of
their topologies. Therefore, by ignoring the factor caused by the gauge transformation (which
contains only a function of time), the circulating wavepacket solution, equation (21), can be
viewed as the wavepacket solution in a one-dimensional system (see equations (24) and (40)
in [8]) being folded into a ring. That is why in equation (56) the total wavefunction ψ(θ, t) can
be written as the sum of all the ψλ(θ + 2nπ, t) terms. This folding nature of the wavepacket
leads to interferences between differentψλ(θ+2nπ, t) terms. As a result, the expectation value
of the θ̂ operator is different from the peak position θc of the wavepacket.

7. Concluding remarks

In this paper, we have studied the problem of a charged particle moving in a ring subject
to a time-dependent flux threading it. After analysing the problem in a classical manner,
various approaches including a Fourier expansion method, a time-evolution method, and the
Lewis–Riesenfeld method were considered and compared. In the Lewis–Riesenfeld approach,
by appropriately managing the periodic boundary condition of the system, a time-dependent
wavefunction can be obtained by using a non-Hermitian time-dependent linear invariant. The
eigenfunction of the invariant can be realized as a Gaussian-type wavepacket with the peak
moving along the classical angular trajectory, while the distribution of the wavepacket is
determined by the ratio of the coefficient of the initial angle to that of the initial canonical
angular momentum. In this circular system, we find that although the classical trajectory
and angular momentum can determine the motion of the wavepacket, the peak position is no
longer an expectation value of the angle operator, and the Ehrenfest theorem can not be directly
applicable.

Recently, possible schemes of the experimental setup to explore the quantum dynamics
of a mesoscopic ring threaded by a time-dependent magnetic flux have been proposed by
either capacitively coupling the ring to a electronic reservoir [28] or applying two shaped time-
delayed pulses [29]. The quantum dynamics in a time-dependent flux-driven ring should be
achievable within recent fabrication capability.
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[17] Büttiker M, Imry Y and Landauer R 1983 Phys. Lett. A 96 365
[18] Chandrasekhar V et al 1991 Phys. Rev. Lett. 67 3578
[19] Mailly D, Chapelier C and Benoit M 1993 Phys. Rev. Lett. 70 2020
[20] Morpurgo A F et al 1998 Phys. Rev. Lett. 80 1050
[21] Schuster R et al 1997 Nature 385 417
[22] Bayer M, Korkusinski M, Hawrylak P, Gutbrod T, Michel M and Forchel A 2003 Phys. Rev. Lett. 90 186801
[23] Levy L P, Dolan G, Dunsmuir J and Bouchiat H 1990 Phys. Rev. Lett. 64 2074
[24] Stern A 1992 Phys. Rev. Lett. 68 1022
[25] Lewis H R Jr 1967 Phys. Rev. Lett. 18 510
[26] Lewis H R Jr and Riesenfeld W B 1969 J. Math. Phys. 10 1458
[27] Bauer J 2002 Phys. Rev. A 65 036101
[28] Arrachea L 2002 Phys. Rev. B 66 045315
[29] Matos-Abiague A and Berkdar J 2005 Phys. Rev. Lett. 94 166801

10

http://dx.doi.org/10.1103/PhysRevLett.66.2033
http://dx.doi.org/10.1103/PhysRevA.55.3961
http://dx.doi.org/10.1103/PhysRevB.60.1830
http://dx.doi.org/10.1103/PhysRevB.61.7645
http://dx.doi.org/10.1103/PhysRevA.63.034102
http://dx.doi.org/10.1103/PhysRevA.68.016101
http://dx.doi.org/10.1103/PhysRevLett.92.133004
http://dx.doi.org/10.1103/PhysRevA.71.014101
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/RevModPhys.59.755
http://dx.doi.org/10.1103/PhysRevB.50.8460
http://dx.doi.org/10.1103/PhysRevLett.58.1593
http://dx.doi.org/10.1103/PhysRevLett.54.2049
http://dx.doi.org/10.1103/PhysRevLett.59.1752
http://dx.doi.org/10.1103/PhysRevLett.62.2543
http://dx.doi.org/10.1016/0375-9601(83)90011-7
http://dx.doi.org/10.1103/PhysRevLett.67.3578
http://dx.doi.org/10.1103/PhysRevLett.70.2020
http://dx.doi.org/10.1103/PhysRevLett.80.1050
http://dx.doi.org/10.1038/385417a0
http://dx.doi.org/10.1103/PhysRevLett.90.186801
http://dx.doi.org/10.1103/PhysRevLett.64.2074
http://dx.doi.org/10.1103/PhysRevLett.68.1022
http://dx.doi.org/10.1103/PhysRevLett.18.510
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1103/PhysRevA.65.036101
http://dx.doi.org/10.1103/PhysRevB.66.045315
http://dx.doi.org/10.1103/PhysRevLett.94.166801

	1. Introduction
	2. A classical treatment
	3. A Fourier expansion method
	4. A time evolution method
	5. The Lewis--Riesenfeld method
	6. A comparison of various approaches
	7. Concluding remarks
	Acknowledgments
	References

